Three Kinds of Geometric Convergence for Markov Chains and the Spectral Gap Property

نویسندگان

  • Wolfgang Stadje
  • Achim Wübker
چکیده

In this paper we investigate three types of convergence for geometrically ergodic Markov chains (MCs) with countable state space, which in general lead to different ‘rates of convergence’. For reversible Markov chains it is shown that these rates coincide. For general MCs we show some connections between their rates and those of the associated reversed MCs. Moreover, we study the relations between these rates and a certain family of isoperimetric constants. This sheds new light on the connection of geometric ergodicity and the so-called spectral gap property, in particular for non-reversible MCs, and makes it possible to derive sharp upper and lower bounds for the spectral radius of certain non-reversible chains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of geometric bounds to the convergence rate of Markov chains on Rn

Quantitative geometric rates of convergence for reversible Markov chains are closely related to the spectral gap of the corresponding operator, which is hard to calculate for general state spaces. This article describes a geometric argumen t to give di erent types of bounds for spectral gaps of Markov chains on bounded subsets of R and to compare the rates of convergence of di erent Markov chai...

متن کامل

On the spectral analysis of second-order Markov chains

Second order Markov chains which are trajectorially reversible are considered. Contrary to the reversibility notion for usual Markov chains, no symmetry property can be deduced for the corresponding transition operators. Nevertheless and even if they are not diagonalizable in general, we study some features of their spectral decompositions and in particular the behavior of the spectral gap unde...

متن کامل

A Class of Markov Chains with No Spectral Gap

In this paper we extend the results of the research started in [6] and [7], in which Karlin-McGregor diagonalization of certain reversible Markov chains over countably infinite general state spaces by orthogonal polynomials was used to estimate the rate of convergence to a stationary distribution. We use a method of Koornwinder [5] to generate a large and interesting family of random walks whic...

متن کامل

Total Variation Cutoff in Birth-and-death Chains

The cutoff phenomenon describes a case where a Markov chain exhibits a sharp transition in its convergence to stationarity. In 1996, Diaconis surveyed this phenomenon, and asked how one could recognize its occurrence in families of finite ergodic Markov chains. In 2004, the third author noted that a necessary condition for cutoff in a family of reversible chains is that the product of the mixin...

متن کامل

weak-reversible Markov chains

The theory of L-spectral gaps for reversible Markov chains has been studied by many authors. In this paper we consider positive recurrent general state space Markov chains with stationary transition probabilities. Replacing the assumption of reversibility by a less strong one, we still obtain a simple necessary and sufficient condition for the spectral gap property of the associated Markov oper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011